IT Security Professional
3483 stories
·
98 followers

DOGE as a National Cyberattack

3 Comments and 8 Shares

In the span of just weeks, the US government has experienced what may be the most consequential security breach in its history—not through a sophisticated cyberattack or an act of foreign espionage, but through official orders by a billionaire with a poorly defined government role. And the implications for national security are profound.

First, it was reported that people associated with the newly created Department of Government Efficiency (DOGE) had accessed the US Treasury computer system, giving them the ability to collect data on and potentially control the department’s roughly $5.45 trillion in annual federal payments.

Then, we learned that uncleared DOGE personnel had gained access to classified data from the US Agency for International Development, possibly copying it onto their own systems. Next, the Office of Personnel Management—which holds detailed personal data on millions of federal employees, including those with security clearances—was compromised. After that, Medicaid and Medicare records were compromised.

Meanwhile, only partially redacted names of CIA employees were sent over an unclassified email account. DOGE personnel are also reported to be feeding Education Department data into artificial intelligence software, and they have also started working at the Department of Energy.

This story is moving very fast. On Feb. 8, a federal judge blocked the DOGE team from accessing the Treasury Department systems any further. But given that DOGE workers have already copied data and possibly installed and modified software, it’s unclear how this fixes anything.

In any case, breaches of other critical government systems are likely to follow unless federal employees stand firm on the protocols protecting national security.

 

The systems that DOGE is accessing are not esoteric pieces of our nation’s infrastructure—they are the sinews of government.

For example, the Treasury Department systems contain the technical blueprints for how the federal government moves money, while the Office of Personnel Management (OPM) network contains information on who and what organizations the government employs and contracts with.

What makes this situation unprecedented isn’t just the scope, but also the method of attack. Foreign adversaries typically spend years attempting to penetrate government systems such as these, using stealth to avoid being seen and carefully hiding any tells or tracks. The Chinese government’s 2015 breach of OPM was a significant US security failure, and it illustrated how personnel data could be used to identify intelligence officers and compromise national security.

In this case, external operators with limited experience and minimal oversight are doing their work in plain sight and under massive public scrutiny: gaining the highest levels of administrative access and making changes to the United States’ most sensitive networks, potentially introducing new security vulnerabilities in the process.

But the most alarming aspect isn’t just the access being granted. It’s the systematic dismantling of security measures that would detect and prevent misuse—including standard incident response protocols, auditing, and change-tracking mechanisms—by removing the career officials in charge of those security measures and replacing them with inexperienced operators.

The Treasury’s computer systems have such an impact on national security that they were designed with the same principle that guides nuclear launch protocols: No single person should have unlimited power. Just as launching a nuclear missile requires two separate officers turning their keys simultaneously, making changes to critical financial systems traditionally requires multiple authorized personnel working in concert.

This approach, known as “separation of duties,” isn’t just bureaucratic red tape; it’s a fundamental security principle as old as banking itself. When your local bank processes a large transfer, it requires two different employees to verify the transaction. When a company issues a major financial report, separate teams must review and approve it. These aren’t just formalities—they’re essential safeguards against corruption and error. These measures have been bypassed or ignored. It’s as if someone found a way to rob Fort Knox by simply declaring that the new official policy is to fire all the guards and allow unescorted visits to the vault.

The implications for national security are staggering. Sen. Ron Wyden said his office had learned that the attackers gained privileges that allow them to modify core programs in Treasury Department computers that verify federal payments, access encrypted keys that secure financial transactions, and alter audit logs that record system changes. Over at OPM, reports indicate that individuals associated with DOGE connected an unauthorized server into the network. They are also reportedly training AI software on all of this sensitive data.

This is much more critical than the initial unauthorized access. These new servers have unknown capabilities and configurations, and there’s no evidence that this new code has gone through any rigorous security testing protocols. The AIs being trained are certainly not secure enough for this kind of data. All are ideal targets for any adversary, foreign or domestic, also seeking access to federal data.

There’s a reason why every modification—hardware or software—to these systems goes through a complex planning process and includes sophisticated access-control mechanisms. The national security crisis is that these systems are now much more vulnerable to dangerous attacks at the same time that the legitimate system administrators trained to protect them have been locked out.

By modifying core systems, the attackers have not only compromised current operations, but have also left behind vulnerabilities that could be exploited in future attacks—giving adversaries such as Russia and China an unprecedented opportunity. These countries have long targeted these systems. And they don’t just want to gather intelligence—they also want to understand how to disrupt these systems in a crisis.

Now, the technical details of how these systems operate, their security protocols, and their vulnerabilities are now potentially exposed to unknown parties without any of the usual safeguards. Instead of having to breach heavily fortified digital walls, these parties Β can simply walk through doors that are being propped open—and then erase evidence of their actions.

 

The security implications span three critical areas.

First, system manipulation: External operators can now modify operations while also altering audit trails that would track their changes. Second, data exposure: Beyond accessing personal information and transaction records, these operators can copy entire system architectures and security configurations—in one case, the technical blueprint of the country’s federal payment infrastructure. Third, and most critically, is the issue of system control: These operators can alter core systems and authentication mechanisms while disabling the very tools designed to detect such changes. This is more than modifying operations; it is modifying the infrastructure that those operations use.

To address these vulnerabilities, three immediate steps are essential. First, unauthorized access must be revoked and proper authentication protocols restored. Next, comprehensive system monitoring and change management must be reinstated—which, given the difficulty of cleaning a compromised system, will likely require a complete system reset. Finally, thorough audits must be conducted of all system changes made during this period.

This is beyond politics—this is a matter of national security. Foreign national intelligence organizations will be quick to take advantage of both the chaos and the new insecurities to steal US data and install backdoors to allow for future access.

Each day of continued unrestricted access makes the eventual recovery more difficult and increases the risk of irreversible damage to these critical systems. While the full impact may take time to assess, these steps represent the minimum necessary actions to begin restoring system integrity and security protocols.

Assuming that anyone in the government still cares.

This essay was written with Davi Ottenheimer, and originally appeared in Foreign Policy.

Read the whole story
fxer
6 days ago
reply
Well as long as there isn’t a private email server involved
Bend, Oregon
3 days ago
Learn how to invest in stocks! Invest $160 and get $6,200 In 2Hours without sending money to anyone DM ME HOW via! nute WhatsApp number:+1(332)252-4701 Text No:+1 (703) 879-8125 WhatsApp link below πŸ‘‡ πŸ‘‡πŸ‘‡πŸ‘‡ https://wa.me/message/7L7D2AETIXNUD1
josephwebster
6 days ago
reply
Heil Elon
Denver, CO, USA
3 days ago
Learn how to invest in stocks! Invest $160 and get $6,200 In 2Hours without sending money to anyone DM ME HOW via! nute WhatsApp number:+1(332)252-4701 Text No:+1 (703) 879-8125 WhatsApp link below πŸ‘‡ πŸ‘‡πŸ‘‡πŸ‘‡ https://wa.me/message/7L7D2AETIXNUD1
JayM
6 days ago
reply
Atlanta, GA
Share this story
Delete
1 public comment
GaryBIshop
8 days ago
reply
The people have spoken, this is what they want. Enjoy!

California Wildfire Relief Fundraiser and Bandcamp Fridays in 2025

1 Comment
Read the whole story
josephwebster
15 days ago
reply
This is a great fundraiser and you get great music and swag in the process. If you buy any of my stuff I'll donate my proceeds to the cause. https://joewebster.bandcamp.com/
Denver, CO, USA
Share this story
Delete

Trust Issues in AI

1 Share

For a technology that seems startling in its modernity, AI sure has a long history. Google Translate, OpenAI chatbots, and Meta AI image generators are built on decades of advancements in linguistics, signal processing, statistics, and other fields going back to the early days of computing—and, often, on seed funding from the U.S. Department of Defense. But today’s tools are hardly the intentional product of the diverse generations of innovators that came before. We agree with Morozov that the “refuseniks,” as he calls them, are wrong to see AI as “irreparably tainted” by its origins. AI is better understood as a creative, global field of human endeavor that has been largely captured by U.S. venture capitalists, private equity, and Big Tech. But that was never the inevitable outcome, and it doesn’t need to stay that way.

The internet is a case in point. The fact that it originated in the military is a historical curiosity, not an indication of its essential capabilities or social significance. Yes, it was created to connect different, incompatible Department of Defense networks. Yes, it was designed to survive the sorts of physical damage expected from a nuclear war. And yes, back then it was a bureaucratically controlled space where frivolity was discouraged and commerce was forbidden.

Over the decades, the internet transformed from military project to academic tool to the corporate marketplace it is today. These forces, each in turn, shaped what the internet was and what it could do. For most of us billions online today, the only internet we have ever known has been corporate—because the internet didn’t flourish until the capitalists got hold of it.

AI followed a similar path. It was originally funded by the military, with the military’s goals in mind. But the Department of Defense didn’t design the modern ecosystem of AI any more than it did the modern internet. Arguably, its influence on AI was even less because AI simply didn’t work back then. While the internet exploded in usage, AI hit a series of dead ends. The research discipline went through multiple “winters” when funders of all kinds—military and corporate—were disillusioned and research money dried up for years at a time. Since the release of ChatGPT, AI has reached the same endpoint as the internet: it is thoroughly dominated by corporate power. Modern AI, with its deep reinforcement learning and large language models, is shaped by venture capitalists, not the military—nor even by idealistic academics anymore.

We agree with much of Morozov’s critique of corporate control, but it does not follow that we must reject the value of instrumental reason. Solving problems and pursuing goals is not a bad thing, and there is real cause to be excited about the uses of current AI. Morozov illustrates this from his own experience: he uses AI to pursue the explicit goal of language learning.

AI tools promise to increase our individual power, amplifying our capabilities and endowing us with skills, knowledge, and abilities we would not otherwise have. This is a peculiar form of assistive technology, kind of like our own personal minion. It might not be that smart or competent, and occasionally it might do something wrong or unwanted, but it will attempt to follow your every command and gives you more capability than you would have had without it.

Of course, for our AI minions to be valuable, they need to be good at their tasks. On this, at least, the corporate models have done pretty well. They have many flaws, but they are improving markedly on a timescale of mere months. ChatGPT’s initial November 2022 model, GPT-3.5, scored about 30 percent on a multiple-choice scientific reasoning benchmark called GPQA. Five months later, GPT-4 scored 36 percent; by May this year, GPT-4o scored about 50 percent, and the most recently released o1 model reached 78 percent, surpassing the level of experts with PhDs. There is no one singular measure of AI performance, to be sure, but other metrics also show improvement.

That’s not enough, though. Regardless of their smarts, we would never hire a human assistant for important tasks, or use an AI, unless we can trust them. And while we have millennia of experience dealing with potentially untrustworthy humans, we have practically none dealing with untrustworthy AI assistants. This is the area where the provenance of the AI matters most. A handful of for-profit companies—OpenAI, Google, Meta, Anthropic, among others—decide how to train the most celebrated AI models, what data to use, what sorts of values they embody, whose biases they are allowed to reflect, and even what questions they are allowed to answer. And they decide these things in secret, for their benefit.

It’s worth stressing just how closed, and thus untrustworthy, the corporate AI ecosystem is. Meta has earned a lot of press for its “open-source” family of LLaMa models, but there is virtually nothing open about them. For one, the data they are trained with is undisclosed. You’re not supposed to use LLaMa to infringe on someone else’s copyright, but Meta does not want to answer questions about whether it violated copyrights to build it. You’re not supposed to use it in Europe, because Meta has declined to meet the regulatory requirements anticipated from the EU’s AI Act. And you have no say in how Meta will build its next model.

The company may be giving away the use of LLaMa, but it’s still doing so because it thinks it will benefit from your using it. CEO Mark Zuckerberg has admitted that eventually, Meta will monetize its AI in all the usual ways: charging to use it at scale, fees for premium models, advertising. The problem with corporate AI is not that the companies are charging “a hefty entrance fee” to use these tools: as Morozov rightly points out, there are real costs to anyone building and operating them. It’s that they are built and operated for the purpose of enriching their proprietors, rather than because they enrich our lives, our wellbeing, or our society.

But some emerging models from outside the world of corporate AI are truly open, and may be more trustworthy as a result. In 2022 the research collaboration BigScience developed an LLM called BLOOM with freely licensed data and code as well as public compute infrastructure. The collaboration BigCode has continued in this spirit, developing LLMs focused on programming. The government of Singapore has built SEA-LION, an open-source LLM focused on Southeast Asian languages. If we imagine a future where we use AI models to benefit all of us—to make our lives easier, to help each other, to improve our public services—we will need more of this. These may not be “eolithic” pursuits of the kind Morozov imagines, but they are worthwhile goals. These use cases require trustworthy AI models, and that means models built under conditions that are transparent and with incentives aligned to the public interest.

Perhaps corporate AI will never satisfy those goals; perhaps it will always be exploitative and extractive by design. But AI does not have to be solely a profit-generating industry. We should invest in these models as a public good, part of the basic infrastructure of the twenty-first century. Democratic governments and civil society organizations can develop AI to offer a counterbalance to corporate tools. And the technology they build, for all the flaws it may have, will enjoy a superpower that corporate AI never will: it will be accountable to the public interest and subject to public will in the transparency, openness, and trustworthiness of its development.

This essay was written with Nathan E. Sanders. It originally appeared as a response in Boston Review‘s forum, “The AI We Deserve.”

Read the whole story
josephwebster
74 days ago
reply
Denver, CO, USA
Share this story
Delete

Ward Christensen has died (BBS and XMODEM fame)

3 Comments
Comments
Read the whole story
josephwebster
118 days ago
reply
Ward, who was actually developing zmodem at the time, helped me with my senior project in engineering (a resilient file transfer protocol). When I asked him how to characterize noise on a telco line, in his typical fashion told me that when I figure that out it would be a great EE PhD thesis topic.
Denver, CO, USA
fxer
129 days ago
reply
Gonna have to rewatch the BBS Documentary with him in it
Bend, Oregon
JayM
130 days ago
reply
:(
Atlanta, GA
Share this story
Delete

NIST Recommends Some Common-Sense Password Rules

1 Comment and 3 Shares

NIST’s second draft of its “SP 800-63-4“—its digital identify guidelines—finally contains some really good rules about passwords:

The following requirements apply to passwords:

  1. lVerifiers and CSPs SHALL require passwords to be a minimum of eight characters in length and SHOULD require passwords to be a minimum of 15 characters in length.
  2. Verifiers and CSPs SHOULD permit a maximum password length of at least 64 characters.
  3. Verifiers and CSPs SHOULD accept all printing ASCII [RFC20] characters and the space character in passwords.
  4. Verifiers and CSPs SHOULD accept Unicode [ISO/ISC 10646] characters in passwords. Each Unicode code point SHALL be counted as a signgle character when evaluating password length.
  5. Verifiers and CSPs SHALL NOT impose other composition rules (e.g., requiring mixtures of different character types) for passwords.
  6. Verifiers and CSPs SHALL NOT require users to change passwords periodically. However, verifiers SHALL force a change if there is evidence of compromise of the authenticator.
  7. Verifiers and CSPs SHALL NOT permit the subscriber to store a hint that is accessible to an unauthenticated claimant.
  8. Verifiers and CSPs SHALL NOT prompt subscribers to use knowledge-based authentication (KBA) (e.g., “What was the name of your first pet?”) or security questions when choosing passwords.
  9. Verifiers SHALL verify the entire submitted password (i.e., not truncate it).

Hooray.

News article.Shashdot thread.

Read the whole story
josephwebster
138 days ago
reply
Since passwords aren't going away any time soon this is a swell set of guidelines.
Denver, CO, USA
ReadLots
137 days ago
These are good.
Share this story
Delete

President Venn Diagram

2 Comments and 13 Shares
Hard to imagine political rhetoric more microtargeted at me than 'I love Venn diagrams. I really do, I love Venn diagrams. It's just something about those three circles.'
Read the whole story
josephwebster
211 days ago
reply
Denver, CO, USA
fxer
213 days ago
reply
Bend, Oregon
Share this story
Delete
2 public comments
ChristianDiscer
213 days ago
reply
Mickey Mouse for president? This classic diagram looks more like Mickey, oh I'm sorry, Minnie Mouse!
SimonHova
213 days ago
reply
I love that this is a fact about our future president.
Greenlawn, NY
matthiasgoergens
213 days ago
It's possible, but seems unlikely. At least in the 2024 election.
steelhorse
213 days ago
You really think Randall is going to be our future president? Are yard signs available yet? I'll take twenty.
gordol
213 days ago
Let's make it happen!
Next Page of Stories